HIGH PERISELECTIVITY OF CYCLOCOUPLING REACTIONS OF 2-OXYALLYL CATION WITH CYCLOHEPTATRIENEIRON TRICARBONYL

Takashi Ishizu, Kazunobu Harano, Masami Yasuda, and Ken Kanematsu* Institute of Synthetic Organic Chemistry, Faculty of Pharmaceutical Sciences, Kyushu University 62, Maidashi, Higashi-ku, Fukuoka 812, Japan

Summary: The cyclocoupling reaction of 2-oxyallyl-Fe(II) cation (1) with cycloheptatrieneiron tricarbonyl (4) gave the σ , π -allyliron tricarbonyl complex (6). Structure of the complex (6) was fully established by X-ray analysis. Oxidative degradation of the complex (6) with o -chloranil afforded a single iron free compound (I) which was indicated that a carbonyl insertion took place during oxidation.

Previously, we have described kinetic data on the reactions of 2-oxyallyl-Fe(I1) cation (1) with seven-membered-ring unsaturated polyenes such as tropone and cycloheptatriene, which were chosen as model for the examination of periselectivity of 2π , 4π , 6π and 8π reactants.¹ The experimental results showed that cycloheptatriene (2) reacted with the 2-oxyallyl cation (1) to give only the ene-type product (3) via a concerted fashion as shown in Scheme I.

On the other hand, the ability of transition metals to alter the reactivity of

co-ordinated olefins toward cycloaddition reaction is a current topic of interest. We now wish to report that the reaction of cycloheptatrieneiron tricarbonyl complex (4) with the 2-oxyallyl-Fe(II) cation (1) afforded a σ , π -iron bonded adduct involving initial electrophilic addition to a nonco-ordinated double bond followed by a dyotropic rearrangement.

When a solution of 2-oxyallyl-Fe(II) cation (1),² generated from 2,4-dibromo-2,4-dimethylpentan-3-one and $Fe_2(CO)$ ₉ with cycloheptatrieneiron tricarbonyl in dry benzene was stirred at 50 °C for 10 h, a single crystalline complex (6) could be isolated by column chromatography (mp 88-89 'C from n-hexane, 26%). The ir spectrum showed the typical carbonyl ligand absorptions at 2080 and 1980 cm^{-1} (Fe(CO)₃) and a signal at 1695 cm⁻¹. (cyclohexanone). The mass spectrum was observed characteristic peaks at m/z 344 (M⁺), 316 (M⁺- CO), 288 (M⁺- 2CO) and 260 (M⁺- 3CO). The ¹H NMR spectrum (100-MHz, CDC1₃) exhibited signals at δ 0.92 (3 H, s, Me), 1.00 (3 H, s, Me), 1.14 (3 H, s, Me), 1.16 (3 H, s, Me), 1.28 (1 H, dd, J = 7, 14 Hz), **1.96-2.16 (1** H, m), 2.28 (1 H, ddd, J = 6, 1 Hz), 2.36- 2.72 (1 H, m), 3.05 (1 H, ddd, $J = 1$, 9 Hz) and 4.24-4.56 (3 H, m). The structure assignment was further secured by proton decoupled 13 C NMR spectrum (25-MHz, CDC1₃) which exhibits resonance at 6 19.7 (C_j), 22.5, 25.1, 25.6, 31.7 (Me), 33.2 $(c_{\rm b})$, 47.5, 49.7 $(c_{\rm g}, c_{\rm i})$, 52.3, 59.5 $(c_{\rm a}, c_{\rm f})$, 66.0, 71.5 $(c_{\rm c}, c_{\rm e})$, 97.0 $(c_{\rm d})$, 202.7, 213.3, 214.3 (ligand carbonyl) and 220.2 (C_h) .

From these data, the structure of compound $(\underline{6})$ was considered to be a σ , π allyliron complex as shown in Scheme II.

Scheme11

However, there are uncertain for conformation of the cyclohexanone moiety and formation of o-bond. Thus, compound (6) was submitted to single-crystal X-ray analysis.³

A crystal of this substance proved to be triclinic, space group $P\bar{1}$, with a = 9.840 (6), $b = 12.176$ (6), $c = 8.076$ (4) $\stackrel{\circ}{\text{A}}$, $\alpha = 95.43$ (4), $\beta = 118.31$ (3), $\gamma =$ 105.71 (5)°, $V = 791.2$ (7) \hat{A}^3 and $Z = 2$. The intensity data were measured on an automated four-circle Syntex $P\overline{1}$ diffractometer with Mo-Ka radiation (λ = 0.71069 A) using θ -2 θ scan technique to maximum value of 2 θ = 50°. Of 2044 independent reflections, 1865 were treated to be observed $(I > 2.3\sigma (I))$. The structure was solved by the direct method.⁴ Refinements were carried out by a

block-diagonal least-squares method using *UNICS II* program system. The final R value was 0.033 for the observed reflections. The molecular structure drawn by the ORTEP program⁶ is shown in Figure 1 with numbering sequence used in this paper. From these results, the coupling constants of the 1_H NMR spectrum for compound (6) ($J_{a,j}$ = 7 Hz, $J_{f,j}$ = 14 Hz) were consistent well with the dihedral angles of X-ray result (44° and 23°). The carbon atoms C(15) and C(12) lie 0.2 $\stackrel{\circ}{\rm A}$ above and 0.68 $\stackrel{\circ}{\rm A}$ below the best plane through atoms (13), C(14), C(16) and C (17), respectively, indicating that the cyclohexanone ring is constrained in a chair conformation. The angles of $C(12) - C(13) - H(13)$, $C(14) - C(13) - H(13)$ and C(12)-C(13)-C(14) are 123.0°, 109.8° and 114.0°, respectively, suggesting that sp^3 hybridization develops between Fe(1) and C(13) to form σ bonding.

Figure 1. ORTEP drawing of complex 7.

Oxidation of compound (6) with o -chloranil afforded a single iron free product (7) which was isolated by column chromatography (mp 93-95 °C from n-hexane, 47%) as shown in Scheme II. The elemental analysis and the mass spectrum (m/z 232 $(M⁺)$) indicated that a carbonyl insertion took place during oxidation. The ir spectrum showed two carbonyl absorptions at 1750 cm -' (cyclopentanone) and 1690 cm $^{-1}$ (cyclohexanone). These data together with $^{\mathrm{1}}$ H NMR spectrum (100-MHz, CDCl₃) [6 1.11 (3 H, s, Me), 1.17 (3 H, s, Me), 1.31 (3 H, s, Me), 1.34 (3 H, s, Me), 1.72 (1 H, ddd, $J_{a,b} = 11$ Hz, $J_{b,c} = 7$ Hz, $J_{b,b} = 1$ Hz, H_{b}), 2.18 (1 H, ddd, $J_{a,b}$ $= 7$ Hz, $J_{\text{a}i} = 1$ Hz, H_a), (1 H, ddd, J_h, c 2.36-2.48 (1 H, m, H_i), 2.52-2.64 (1 H, m, H_c), 3.04 = 5 Hz, H_b,), 3.14-3.28 (1 H, m, H_f), 5.62 (1 H, dd, J_{d,e} = 9 Hz, $J_{e,f}$ = 4 Hz, H_e) and 6.14 (1 H, dd, J_{c,d} = 5.62 (1 H, dd, J_{d,e} 7 Hz, H_d)`], and the "C NMR spectrum (25-MHz, CDCl₃) [6 23.4, 24.5, 28.1, 31.0 (Me), 36.0 (C_b), 43.6, 44.1, 45.9 (C_a,

 C_j , C_f), 45.1, 47.2 (C_q , C_j), 57.2 (C_c), 127.0, 135.6 (C_d , C_e), 213.2 (C_k) and 217.3 (C_h)] supported the structure assignment of 7.

The experimental results showed that initial electrophilic attack of the 2 oxyallyl cation (1) may occur on free double bond of cycloheptatrieneiron tricarbonyl (4) forming a dipolar transient (5) followed by ring closure to σ, π allyl isomer (6) which is obtained by a thermodynamically controlled process.⁷

References and Notes:

- 1) T. Ishizu, M. Mori, and K. Kanematsu, J. Org. Chem. in the press.
- 2) R. Noyori, Y. Hayakawa, M. Funakura, H, Takaya, S. Murai, R. Kobayashi, and S. Tsutsumi, J. Am. Chem. Sot., 1974, 94, 7202.
- 3) Full details of all X-ray crystal structure determination will be published separately.
- 4) P. Main, S.E. Hull, L. Lessinger, G. Germain, J.P. Declercq, and M.M. Woolfson, 1978, MULTAN 78, a System of Computer Programs for Automatic Solution of Crystal Structures from X-ray Diffraction Data, University of York.
- 5) T. Sakurai, J. Iwasaki, Y. Watanabe, K. Kobayashi, Y. Bando, and Y. Nakamichi, Rikagaku Kenkyusho Hookoku, 1974, so, 75. S. Kawano, Koho, Computer Center of Kyushu University, 1980, 13, 39.
- 6) C.K. Jonson, ORTEP.Report ORNL-3794. Oak Ridge National Laboratory, Tennessee 1965.
- 7) We are grateful to arefereefor discussing the formation mechanism.

(Received in Japan 9 January 1961)