HIGH PERISELECTIVITY OF CYCLOCOUPLING REACTIONS OF 2-OXYALLYL CATION WITH CYCLOHEPTATRIENEIRON TRICARBONYL

Takashi Ishizu, Kazunobu Harano, Masami Yasuda, and Ken Kanematsu* Institute of Synthetic Organic Chemistry, Faculty of Pharmaceutical Sciences, Kyushu University 62, Maidashi, Higashi-ku, Fukuoka 812, Japan

Summary: The cyclocoupling reaction of 2-oxyallyl-Fe(II) cation (1) with cycloheptatrieneiron tricarbonyl (4) gave the σ,π -allyliron tricarbonyl complex (6). Structure of the complex (6) was fully established by X-ray analysis. Oxidative degradation of the complex (6) with *o*-chloranil afforded a single iron free compound (7) which was indicated that a carbonyl insertion took place during oxidation.

Previously, we have described kinetic data on the reactions of 2-oxyallyl-Fe(II) cation (1) with seven-membered-ring unsaturated polyenes such as tropone and cyclo-heptatriene, which were chosen as model for the examination of periselectivity of 2π , 4π , 6π and 8π reactants.¹ The experimental results showed that cyclohepta-triene (2) reacted with the 2-oxyallyl cation (1) to give only the ene-type product (3) via a concerted fashion as shown in Scheme I.

On the other hand, the ability of transition metals to alter the reactivity of co-ordinated olefins toward cycloaddition reaction is a current topic of interest.

We now wish to report that the reaction of cycloheptatrieneiron tricarbonyl complex (4) with the 2-oxyallyl-Fe(II) cation (1) afforded a σ,π -iron bonded adduct involving initial electrophilic addition to a nonco-ordinated double bond followed by a dyotropic rearrangement.

When a solution of 2-oxyallyl-Fe(II) cation $(\underline{1})$,² generated from 2,4-dibromo-2,4-dimethylpentan-3-one and Fe₂(CO)₉ with cycloheptatrieneiron tricarbonyl in dry benzene was stirred at 50 °C for 10 h, a single crystalline complex ($\underline{6}$) could be isolated by column chromatography (mp 88-89 °C from n-hexane, 20%). The ir spectrum showed the typical carbonyl ligand absorptions at 2080 and 1980 ${
m cm}^{-1}$ $(Fe(CO)_3)$ and a signal at 1695 cm⁻¹ (cyclohexanone). The mass spectrum was observed characteristic peaks at m/z 344 (M^+), 316 (M^+ - CO), 288 (M^+ - 2CO) and The ¹H NMR spectrum (100-MHz, CDCl₃) exhibited signals at δ $260 (M^+ - 3CO)$. 0.92 (3 H, s, Me), 1.00 (3 H, s, Me), 1.14 (3 H, s, Me), 1.16 (3 H, s, Me), 1.28 (1 H, dd, J = 7, 14 Hz), 1.96-2.16 (1 H, m), 2.28 (1 H, ddd, J = 6, 1 Hz), 2.36-2.72 (1 H, m), 3.05 (1 H, ddd, J = 1, 9 Hz) and 4.24-4.56 (3 H, m). The structure assignment was further secured by proton decoupled 13 C NMR spectrum (25-MHz, $CDCl_3$) which exhibits resonance at δ 19.7 (C_j), 22.5, 25.1, 25.6, 31.7 (Me), 33.2 (C_{b}) , 47.5, 49.7 (C_{g}, C_{i}) , 52.3, 59.5 (C_{a}, C_{f}) , 66.0, 71.5 (C_{c}, C_{e}) , 97.0 (C_{d}) , 202.7, 213.3, 214.3 (ligand carbonyl) and 220.2 (C_h).

From these data, the structure of compound (6) was considered to be a σ, π allyliron complex as shown in Scheme II.

Schemell

R = Me

However, there are uncertain for conformation of the cyclohexanone moiety and Thus, compound (6) was submitted to single-crystal X-ray formation of σ -bond. analvsis.³

 \mathbf{A} crystal of this substance proved to be triclinic, space group $P\overline{\mathbf{I}}$, with a = 9.840 (6), b = 12.176 (6), c = 8.076 (4) Å, $\alpha = 95.43$ (4), $\beta = 118.31$ (3), $\gamma =$ 105.71 (5)°, V = 791.2 (7) \mathring{A}^3 and Z = 2. The intensity data were measured on an automated four-circle Syntex $P\overline{1}$ diffractometer with Mo-Klpha radiation (λ = 0.71069 A) using θ -2 θ scan technique to maximum value of 2θ = 50°. Of 2044 independent reflections, 1865 were treated to be observed (I > 2.3σ (I)). The structure was solved by the direct method. 4 Refinements were carried out by a

block-diagonal least-squares method using UNICS II program system.⁵ The final R value was 0.033 for the observed reflections. The molecular structure drawn by the ORTEP program⁶ is shown in Figure 1 with numbering sequence used in this paper. From these results, the coupling constants of the ¹H NMR spectrum for compound ($\underline{6}$) ($J_{a,j} = 7 \text{ Hz}$, $J_{f,j} = 14 \text{ Hz}$) were consistent well with the dihedral angles of X-ray result (44° and 23°). The carbon atoms C(15) and C(12) lie 0.2 Å above and 0.68 Å below the best plane through atoms (13), C(14), C(16) and C (17), respectively, indicating that the cyclohexanone ring is constrained in a chair conformation. The angles of C(12)-C(13)-H(13), C(14)-C(13)-H(13) and C(12)-C(13)-C(14) are 123.0°, 109.8° and 114.0°, respectively, suggesting that sp³ hybridization develops between Fe(1) and C(13) to form σ bonding.

Figure 1. ORTEP drawing of complex 7.

Oxidation of compound ($\underline{6}$) with *o*-chloranil afforded a single iron free product ($\underline{7}$) which was isolated by column chromatography (mp 93-95 °C from n-hexane, 47%) as shown in Scheme II. The elemental analysis and the mass spectrum (m/z 232 (M⁺)) indicated that a carbonyl insertion took place during oxidation. The ir spectrum showed two carbonyl absorptions at 1750 cm⁻¹ (cyclopentanone) and 1690 cm⁻¹ (cyclohexanone). These data together with ¹H NMR spectrum (100-MHz, CDCl₃) [δ 1.11 (3 H, s, Me), 1.17 (3 H, s, Me), 1.31 (3 H, s, Me), 1.34 (3 H, s, Me), 1.72 (1 H, ddd, J_{a,b} = 11 Hz, J_{b,c} = 7 Hz, J_{b,b} = 1 Hz, H_b), 2.18 (1 H, ddd, J_{a,b}, 1.72 (1 H, ddd, J_{a,b} = 11 Hz, J_{b,c} = 7 Hz, J_{b,b}, 2.52-2.64 (1 H, m, H_c), 3.04 (1 H, ddd, J_{b',c} = 5 Hz, H_b), 3.14-3.28 (1 H, m, H_f), 5.62 (1 H, dd, J_{d,e} = 9 Hz, J_{e,f} = 4 Hz, H_e) and 6.14 (1 H, dd, J_{c,d} = 7 Hz, H_d)], and the ¹³C NMR spectrum (25-MHz, CDCl₃) [δ 23.4, 24.5, 28.1, 31.0 (Me), 36.0 (C_b), 43.6, 44.1, 45.9 (C_a)

 C_{j}, C_{f} , 45.1, 47.2 (C_{q}, C_{j}), 57.2 (C_{c}), 127.0, 135.6 (C_{d}, C_{e}), 213.2 (C_{k}) and 217.3 (C_{h})] supported the structure assignment of <u>7</u>.

The experimental results showed that initial electrophilic attack of the 2oxyallyl cation (<u>1</u>) may occur on free double bond of cycloheptatrieneiron tricarbonyl (<u>4</u>) forming a dipolar transient (<u>5</u>) followed by ring closure to σ, π allyl isomer (<u>6</u>) which is obtained by a thermodynamically controlled process.⁷

References and Notes:

- 1) T. Ishizu, M. Mori, and K. Kanematsu, J. Org. Chem. in the press.
- R. Noyori, Y. Hayakawa, M. Funakura, H, Takaya, S. Murai, R. Kobayashi, and S. Tsutsumi, J. Am. Chem. Soc., 1974, 94, 7202.
- Full details of all X-ray crystal structure determination will be published separately.
- 4) P. Main, S.E. Hull, L. Lessinger, G. Germain, J.P. Declercq, and M.M. Woolfson, 1978, MULTAN 78, a System of Computer Programs for Automatic Solution of Crystal Structures from X-ray Diffraction Data, University of York.
- 5) T. Sakurai, J. Iwasaki, Y. Watanabe, K. Kobayashi, Y. Bando, and Y. Nakamichi, Rikagaku Kenkyusho Hookoku, 1974, <u>50</u>, 75. S. Kawano, Koho, Computer Center of Kyushu University, 1980, 13, 39.
- C.K. Jonson, ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee 1965.
- 7) We are grateful to a referee for discussing the formation mechanism.

(Received in Japan 9 January 1981)